Logfiles

Logfile Content

2026-01-06 06:51:03,541 - main.py - DEBUG - 99 - loading sales data..

2026-01-06 06:51:04,398 - reading_data.py - DEBUG - 129 - start date: 2022-03-01 00:00:00 end date: 2025-06-30 00:00:00 

2026-01-06 06:52:07,641 - functions.py - INFO - 274 - Fetched prediction months:
('2023-12-7', (2024, 1))
('2024-01-7', (2024, 2))
('2024-02-7', (2024, 3))
('2024-03-7', (2024, 4))
('2024-04-7', (2024, 5))
('2024-05-7', (2024, 6))
('2024-06-7', (2024, 7))
('2024-07-7', (2024, 8))
('2024-08-7', (2024, 9))
('2024-09-7', (2024, 10))
('2024-10-7', (2024, 11))
('2024-11-7', (2024, 12))
('2024-12-7', (2025, 1))
('2025-01-7', (2025, 2))
('2025-02-7', (2025, 3))
('2025-03-7', (2025, 4))
('2025-04-7', (2025, 5))
('2025-04-7', (2025, 6))

2026-01-06 06:52:08,046 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:52:08,145 - algorithm.py - DEBUG - 78 - shape: (52587, 279)  start: 2022-05-02 00:00:00  end: 2023-12-06 00:00:00 

2026-01-06 06:52:16,628 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:52:16,629 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:52:16,630 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:52:16,632 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 1) training data to: 2023-12-7

2026-01-06 06:52:16,632 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:52:27,103 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 1)

2026-01-06 06:52:27,106 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 1)

2026-01-06 06:52:27,107 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 1)

2026-01-06 06:52:27,107 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 1) training data to: 2023-12-7

2026-01-06 06:52:27,107 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:52:27,635 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 1)

2026-01-06 06:52:27,637 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 1)

2026-01-06 06:52:27,637 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 1)

2026-01-06 06:52:27,638 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:52:27,740 - algorithm.py - DEBUG - 78 - shape: (55164, 279)  start: 2022-05-02 00:00:00  end: 2024-01-06 00:00:00 

2026-01-06 06:52:36,518 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:52:36,518 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:52:36,518 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:52:36,521 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 2) training data to: 2024-01-7

2026-01-06 06:52:36,521 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:52:46,862 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 2)

2026-01-06 06:52:46,865 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 2)

2026-01-06 06:52:46,865 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 2)

2026-01-06 06:52:46,866 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 2) training data to: 2024-01-7

2026-01-06 06:52:46,866 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:52:47,380 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 2)

2026-01-06 06:52:47,382 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 2)

2026-01-06 06:52:47,382 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 2)

2026-01-06 06:52:47,382 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:52:47,489 - algorithm.py - DEBUG - 78 - shape: (58048, 279)  start: 2022-05-02 00:00:00  end: 2024-02-06 00:00:00 

2026-01-06 06:52:56,337 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:52:56,337 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:52:56,338 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:52:56,340 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 3) training data to: 2024-02-7

2026-01-06 06:52:56,341 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:53:06,603 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 3)

2026-01-06 06:53:06,605 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 3)

2026-01-06 06:53:06,606 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 3)

2026-01-06 06:53:06,606 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 3) training data to: 2024-02-7

2026-01-06 06:53:06,606 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:53:07,150 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 3)

2026-01-06 06:53:07,152 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 3)

2026-01-06 06:53:07,152 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 3)

2026-01-06 06:53:07,152 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:53:07,265 - algorithm.py - DEBUG - 78 - shape: (60793, 279)  start: 2022-05-02 00:00:00  end: 2024-03-06 00:00:00 

2026-01-06 06:53:16,534 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:53:16,534 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:53:16,536 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:53:16,538 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 4) training data to: 2024-03-7

2026-01-06 06:53:16,538 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:53:26,928 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 4)

2026-01-06 06:53:26,930 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 4)

2026-01-06 06:53:26,931 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 4)

2026-01-06 06:53:26,931 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 4) training data to: 2024-03-7

2026-01-06 06:53:26,931 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:53:27,454 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 4)

2026-01-06 06:53:27,457 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 4)

2026-01-06 06:53:27,457 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 4)

2026-01-06 06:53:27,457 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:53:27,574 - algorithm.py - DEBUG - 78 - shape: (63568, 279)  start: 2022-05-02 00:00:00  end: 2024-04-06 00:00:00 

2026-01-06 06:53:37,370 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:53:37,370 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:53:37,370 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:53:37,373 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 5) training data to: 2024-04-7

2026-01-06 06:53:37,373 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:53:47,685 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 5)

2026-01-06 06:53:47,687 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 5)

2026-01-06 06:53:47,688 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 5)

2026-01-06 06:53:47,688 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 5) training data to: 2024-04-7

2026-01-06 06:53:47,688 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:53:48,382 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 5)

2026-01-06 06:53:48,385 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 5)

2026-01-06 06:53:48,385 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 5)

2026-01-06 06:53:48,385 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:53:48,514 - algorithm.py - DEBUG - 78 - shape: (66230, 279)  start: 2022-05-02 00:00:00  end: 2024-05-06 00:00:00 

2026-01-06 06:53:58,216 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:53:58,216 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:53:58,216 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:53:58,219 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 6) training data to: 2024-05-7

2026-01-06 06:53:58,219 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:54:08,536 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 6)

2026-01-06 06:54:08,538 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 6)

2026-01-06 06:54:08,538 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 6)

2026-01-06 06:54:08,538 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 6) training data to: 2024-05-7

2026-01-06 06:54:08,538 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:54:09,065 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 6)

2026-01-06 06:54:09,067 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 6)

2026-01-06 06:54:09,067 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 6)

2026-01-06 06:54:09,067 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:54:09,198 - algorithm.py - DEBUG - 78 - shape: (68894, 279)  start: 2022-05-02 00:00:00  end: 2024-06-06 00:00:00 

2026-01-06 06:54:18,984 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:54:18,984 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:54:18,984 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:54:18,987 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 7) training data to: 2024-06-7

2026-01-06 06:54:18,987 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:54:29,380 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 7)

2026-01-06 06:54:29,383 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 7)

2026-01-06 06:54:29,383 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 7)

2026-01-06 06:54:29,383 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 7) training data to: 2024-06-7

2026-01-06 06:54:29,383 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:54:29,918 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 7)

2026-01-06 06:54:29,921 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 7)

2026-01-06 06:54:29,921 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 7)

2026-01-06 06:54:29,921 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:54:30,060 - algorithm.py - DEBUG - 78 - shape: (71778, 279)  start: 2022-05-02 00:00:00  end: 2024-07-06 00:00:00 

2026-01-06 06:54:40,293 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:54:40,293 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:54:40,294 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:54:40,297 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 8) training data to: 2024-07-7

2026-01-06 06:54:40,297 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:54:50,744 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 8)

2026-01-06 06:54:50,747 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 8)

2026-01-06 06:54:50,747 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 8)

2026-01-06 06:54:50,747 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 8) training data to: 2024-07-7

2026-01-06 06:54:50,747 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:54:51,285 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 8)

2026-01-06 06:54:51,288 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 8)

2026-01-06 06:54:51,288 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 8)

2026-01-06 06:54:51,289 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:54:51,437 - algorithm.py - DEBUG - 78 - shape: (74647, 279)  start: 2022-05-02 00:00:00  end: 2024-08-06 00:00:00 

2026-01-06 06:55:02,190 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:55:02,191 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:55:02,191 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:55:02,194 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 9) training data to: 2024-08-7

2026-01-06 06:55:02,194 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:55:12,542 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 9)

2026-01-06 06:55:12,545 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 9)

2026-01-06 06:55:12,545 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 9)

2026-01-06 06:55:12,545 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 9) training data to: 2024-08-7

2026-01-06 06:55:12,545 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:55:13,070 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 9)

2026-01-06 06:55:13,072 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 9)

2026-01-06 06:55:13,072 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 9)

2026-01-06 06:55:13,072 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:55:13,224 - algorithm.py - DEBUG - 78 - shape: (77566, 279)  start: 2022-05-02 00:00:00  end: 2024-09-06 00:00:00 

2026-01-06 06:55:23,852 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:55:23,852 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:55:23,852 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:55:23,855 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 10) training data to: 2024-09-7

2026-01-06 06:55:23,855 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:55:24,780 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2024, 10)

2026-01-06 06:55:34,259 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 10)

2026-01-06 06:55:34,262 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 10)

2026-01-06 06:55:34,262 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 10)

2026-01-06 06:55:34,262 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 10) training data to: 2024-09-7

2026-01-06 06:55:34,263 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:55:34,313 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2024, 10)

2026-01-06 06:55:34,788 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 10)

2026-01-06 06:55:34,790 - prediction_task.py - DEBUG - 31 - test data not found for 195 Kelheim in period (2024, 10)

2026-01-06 06:55:34,790 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 10)

2026-01-06 06:55:34,790 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:55:34,938 - algorithm.py - DEBUG - 78 - shape: (80206, 279)  start: 2022-05-02 00:00:00  end: 2024-10-05 00:00:00 

2026-01-06 06:55:45,796 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:55:45,797 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:55:45,797 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:55:45,801 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 11) training data to: 2024-10-7

2026-01-06 06:55:45,802 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:55:46,728 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2024, 11)

2026-01-06 06:55:56,440 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 11)

2026-01-06 06:55:56,531 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 11)

2026-01-06 06:55:56,531 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 11) training data to: 2024-10-7

2026-01-06 06:55:56,531 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:55:56,582 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2024, 11)

2026-01-06 06:55:57,051 - prediction_task.py - DEBUG - 31 - test data not found for 194 Michelfeld in period (2024, 11)

2026-01-06 06:55:57,057 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 11)

2026-01-06 06:55:57,057 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:55:57,206 - algorithm.py - DEBUG - 78 - shape: (83073, 279)  start: 2022-05-02 00:00:00  end: 2024-11-06 00:00:00 

2026-01-06 06:56:07,965 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:56:07,965 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:56:07,965 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:56:07,968 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2024, 12) training data to: 2024-11-7

2026-01-06 06:56:07,968 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:56:08,889 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2024, 12)

2026-01-06 06:56:18,554 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2024, 12)

2026-01-06 06:56:18,554 - main.py - INFO - 137 - Successfully trained agp agp for month (2024, 12) training data to: 2024-11-7

2026-01-06 06:56:18,554 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:56:18,606 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2024, 12)

2026-01-06 06:56:19,089 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2024, 12)

2026-01-06 06:56:19,090 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:56:19,246 - algorithm.py - DEBUG - 78 - shape: (85947, 279)  start: 2022-05-02 00:00:00  end: 2024-12-06 00:00:00 

2026-01-06 06:56:30,528 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:56:30,528 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:56:30,528 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:56:30,531 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2025, 1) training data to: 2024-12-7

2026-01-06 06:56:30,531 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:56:31,696 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 1)

2026-01-06 06:56:34,645 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 1)

2026-01-06 06:56:41,032 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2025, 1)

2026-01-06 06:56:41,032 - main.py - INFO - 137 - Successfully trained agp agp for month (2025, 1) training data to: 2024-12-7

2026-01-06 06:56:41,032 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:56:41,084 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 1)

2026-01-06 06:56:41,236 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 1)

2026-01-06 06:56:41,796 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2025, 1)

2026-01-06 06:56:41,797 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:56:41,960 - algorithm.py - DEBUG - 78 - shape: (88432, 279)  start: 2022-05-02 00:00:00  end: 2025-01-06 00:00:00 

2026-01-06 06:56:53,151 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:56:53,152 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:56:53,152 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:56:53,155 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2025, 2) training data to: 2025-01-7

2026-01-06 06:56:53,155 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:56:54,062 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 2)

2026-01-06 06:56:56,982 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 2)

2026-01-06 06:57:03,344 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2025, 2)

2026-01-06 06:57:03,344 - main.py - INFO - 137 - Successfully trained agp agp for month (2025, 2) training data to: 2025-01-7

2026-01-06 06:57:03,344 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:57:03,395 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 2)

2026-01-06 06:57:03,546 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 2)

2026-01-06 06:57:03,874 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2025, 2)

2026-01-06 06:57:03,874 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:57:04,043 - algorithm.py - DEBUG - 78 - shape: (91428, 279)  start: 2022-05-02 00:00:00  end: 2025-02-06 00:00:00 

2026-01-06 06:57:15,976 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:57:15,977 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:57:15,977 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:57:15,980 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2025, 3) training data to: 2025-02-7

2026-01-06 06:57:15,980 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:57:16,883 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 3)

2026-01-06 06:57:19,770 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 3)

2026-01-06 06:57:26,291 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2025, 3)

2026-01-06 06:57:26,292 - main.py - INFO - 137 - Successfully trained agp agp for month (2025, 3) training data to: 2025-02-7

2026-01-06 06:57:26,292 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:57:26,345 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 3)

2026-01-06 06:57:26,500 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 3)

2026-01-06 06:57:26,821 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2025, 3)

2026-01-06 06:57:26,821 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:57:26,988 - algorithm.py - DEBUG - 78 - shape: (94067, 279)  start: 2022-05-02 00:00:00  end: 2025-03-06 00:00:00 

2026-01-06 06:57:38,346 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:57:38,347 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:57:38,347 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:57:38,351 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2025, 4) training data to: 2025-03-7

2026-01-06 06:57:38,351 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:57:39,258 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 4)

2026-01-06 06:57:42,208 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 4)

2026-01-06 06:57:48,716 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2025, 4)

2026-01-06 06:57:48,716 - main.py - INFO - 137 - Successfully trained agp agp for month (2025, 4) training data to: 2025-03-7

2026-01-06 06:57:48,716 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:57:48,768 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 4)

2026-01-06 06:57:48,920 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 4)

2026-01-06 06:57:49,236 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2025, 4)

2026-01-06 06:57:49,236 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:57:49,405 - algorithm.py - DEBUG - 78 - shape: (96946, 279)  start: 2022-05-02 00:00:00  end: 2025-04-05 00:00:00 

2026-01-06 06:58:01,320 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:58:01,321 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:58:01,321 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:58:01,324 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2025, 5) training data to: 2025-04-7

2026-01-06 06:58:01,325 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:58:02,223 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 5)

2026-01-06 06:58:03,213 - prediction_task.py - DEBUG - 31 - test data not found for 62 Heidenheim in period (2025, 5)

2026-01-06 06:58:05,020 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 5)

2026-01-06 06:58:11,553 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2025, 5)

2026-01-06 06:58:11,553 - main.py - INFO - 137 - Successfully trained agp agp for month (2025, 5) training data to: 2025-04-7

2026-01-06 06:58:11,553 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:58:11,604 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 5)

2026-01-06 06:58:11,657 - prediction_task.py - DEBUG - 31 - test data not found for 62 Heidenheim in period (2025, 5)

2026-01-06 06:58:11,753 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 5)

2026-01-06 06:58:12,083 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2025, 5)

2026-01-06 06:58:12,083 - algorithm.py - DEBUG - 72 - start training with xgboost...

2026-01-06 06:58:12,254 - algorithm.py - DEBUG - 78 - shape: (96946, 279)  start: 2022-05-02 00:00:00  end: 2025-04-05 00:00:00 

2026-01-06 06:58:24,176 - algorithm.py - INFO - 122 - parameters {'objective': 'reg:squarederror', 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': 0.8, 'device': None, 'early_stopping_rounds': None, 'enable_categorical': True, 'eval_metric': <function mean_squared_error at 0x78984c1a2700>, 'feature_types': None, 'gamma': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.01, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 7, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 1250, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': 0.05, 'reg_lambda': 1.0, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': 0.8, 'tree_method': 'hist', 'validate_parameters': None, 'verbosity': None} 

2026-01-06 06:58:24,177 - algorithm.py - INFO - 130 - parameters:
{   'colsample_bytree': 0.8,
    'enable_categorical': True,
    'eval_metric': <function mean_squared_error at 0x78984c1a2700>,
    'learning_rate': 0.01,
    'max_depth': 7,
    'missing': nan,
    'n_estimators': 1250,
    'n_jobs': -1,
    'objective': 'reg:squarederror',
    'random_state': 42,
    'reg_alpha': 0.05,
    'reg_lambda': 1.0,
    'subsample': 0.8,
    'tree_method': 'hist'}

2026-01-06 06:58:24,177 - algorithm.py - INFO - 131 - indep vars:
['ladenvkpmean', 'ladenvkpmin', 'ladenvkpmax', 'ladenvkpstd', 'fg_bl_BW', 'fg_bl_BY', 'fg_bl_HE', 'fg_bl_NW', 'fg_bl_RP', 'weekdayname_Monday', 'weekdayname_Tuesday', 'weekdayname_Wednesday', 'weekdayname_Thursday', 'weekdayname_Friday', 'weekdayname_Saturday', 'isoweek_1', 'isoweek_2', 'isoweek_3', 'isoweek_4', 'isoweek_5', 'isoweek_6', 'isoweek_7', 'isoweek_8', 'isoweek_9', 'isoweek_10', 'isoweek_11', 'isoweek_12', 'isoweek_13', 'isoweek_14', 'isoweek_15', 'isoweek_16', 'isoweek_17', 'isoweek_18', 'isoweek_19', 'isoweek_20', 'isoweek_21', 'isoweek_22', 'isoweek_23', 'isoweek_24', 'isoweek_25', 'isoweek_26', 'isoweek_27', 'isoweek_28', 'isoweek_29', 'isoweek_30', 'isoweek_31', 'isoweek_32', 'isoweek_33', 'isoweek_34', 'isoweek_35', 'isoweek_36', 'isoweek_37', 'isoweek_38', 'isoweek_39', 'isoweek_40', 'isoweek_41', 'isoweek_42', 'isoweek_43', 'isoweek_44', 'isoweek_45', 'isoweek_46', 'isoweek_47', 'isoweek_48', 'isoweek_49', 'isoweek_50', 'isoweek_51', 'isoweek_52', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'year_2022', 'year_2023', 'year_2024', 'fg_sg_1', 'fg_sg_2', 'fg_sg_3', 'fg_sg_9', 'fg_sg_19', 'fg_sg_21', 'fg_sg_24', 'fg_sg_26', 'fg_sg_27', 'fg_sg_28', 'fg_sg_29', 'fg_sg_31', 'fg_sg_34', 'fg_sg_40', 'fg_sg_41', 'fg_sg_43', 'fg_sg_44', 'fg_sg_52', 'fg_sg_55', 'fg_sg_57', 'fg_sg_58', 'fg_sg_61', 'fg_sg_62', 'fg_sg_63', 'fg_sg_64', 'fg_sg_65', 'fg_sg_66', 'fg_sg_68', 'fg_sg_69', 'fg_sg_71', 'fg_sg_73', 'fg_sg_74', 'fg_sg_76', 'fg_sg_77', 'fg_sg_80', 'fg_sg_81', 'fg_sg_82', 'fg_sg_83', 'fg_sg_85', 'fg_sg_88', 'fg_sg_89', 'fg_sg_91', 'fg_sg_92', 'fg_sg_96', 'fg_sg_97', 'fg_sg_99', 'fg_sg_101', 'fg_sg_103', 'fg_sg_104', 'fg_sg_105', 'fg_sg_107', 'fg_sg_108', 'fg_sg_109', 'fg_sg_110', 'fg_sg_111', 'fg_sg_112', 'fg_sg_113', 'fg_sg_117', 'fg_sg_118', 'fg_sg_120', 'fg_sg_125', 'fg_sg_126', 'fg_sg_128', 'fg_sg_130', 'fg_sg_131', 'fg_sg_133', 'fg_sg_134', 'fg_sg_136', 'fg_sg_139', 'fg_sg_141', 'fg_sg_142', 'fg_sg_143', 'fg_sg_146', 'fg_sg_147', 'fg_sg_148', 'fg_sg_149', 'fg_sg_150', 'fg_sg_151', 'fg_sg_153', 'fg_sg_154', 'fg_sg_155', 'fg_sg_157', 'fg_sg_159', 'fg_sg_160', 'fg_sg_161', 'fg_sg_162', 'fg_sg_164', 'fg_sg_165', 'fg_sg_166', 'fg_sg_167', 'fg_sg_168', 'fg_sg_169', 'fg_sg_170', 'fg_sg_171', 'fg_sg_172', 'fg_sg_173', 'fg_sg_174', 'fg_sg_176', 'fg_sg_177', 'fg_sg_179', 'fg_sg_181', 'fg_sg_182', 'fg_sg_183', 'fg_sg_185', 'fg_sg_187', 'fg_sg_188', 'fg_sg_189', 'fg_sg_190', 'fg_sg_191', 'fg_sg_192', 'fg_sg_193', 'psv_starts', 'psv', 'salesday', 'presales', 'postsales', 'bridge_days', 'outlet', 'store_opening', 'weiberfasching_2022', 'faschingsfreitag_2022', 'faschingssamstag_2022', 'rosenmontag_2022', 'faschingdienstag_2022', 'weiberfasching', 'faschingsfreitag', 'faschingssamstag', 'pre_christmas_peaks', 'valentines_day', 'interaction', 'market_Montags', 'market_Dienstags', 'market_Mittwochs', 'market_Donnerstags', 'market_Freitags', 'market_Samstags', 'population', 'shop_area', 'dist_from_weiden', 'ratio', 'average', 'shop_count', 'weekday_special', 'weekend_special', 'x_coord', 'y_coord', 'dayofmonth', 'isoweek', 'month', 'dayofyear', 'dayofseason', 'season_month']

2026-01-06 06:58:24,181 - main.py - INFO - 137 - Successfully trained xgb9 xgboost for month (2025, 6) training data to: 2025-04-7

2026-01-06 06:58:24,181 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:58:25,073 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 6)

2026-01-06 06:58:26,062 - prediction_task.py - DEBUG - 31 - test data not found for 62 Heidenheim in period (2025, 6)

2026-01-06 06:58:27,854 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 6)

2026-01-06 06:58:34,400 - main.py - INFO - 145 - Successfully predicted with xgb9 xgboost for month (2025, 6)

2026-01-06 06:58:34,400 - main.py - INFO - 137 - Successfully trained agp agp for month (2025, 6) training data to: 2025-04-7

2026-01-06 06:58:34,400 - prediction_task.py - DEBUG - 21 - predictions starting...

2026-01-06 06:58:34,450 - prediction_task.py - DEBUG - 31 - test data not found for 29 Kelheim II in period (2025, 6)

2026-01-06 06:58:34,504 - prediction_task.py - DEBUG - 31 - test data not found for 62 Heidenheim in period (2025, 6)

2026-01-06 06:58:34,600 - prediction_task.py - DEBUG - 31 - test data not found for 96 Hof in period (2025, 6)

2026-01-06 06:58:34,930 - main.py - INFO - 145 - Successfully predicted with agp agp for month (2025, 6)

2026-01-06 06:58:34,930 - functions.py - INFO - 425 - NB: using calibrate2 to meet AGP monthly totals

2026-01-06 06:59:04,949 - functions.py - INFO - 87 - No duplicates found in predictions.

2026-01-06 06:59:41,190 - functions.py - DEBUG - 207 - metric: mae 

2026-01-06 06:59:48,825 - functions.py - DEBUG - 207 - metric: mape 

2026-01-06 06:59:56,241 - functions.py - DEBUG - 207 - metric: jensen_shannon 

2026-01-06 07:00:03,853 - functions.py - DEBUG - 207 - metric: kullback_leibler 

2026-01-06 07:00:12,960 - conversion_functions.py - DEBUG - 168 - business hours file: (1332, 9)  Index(['fg_sg', 'fg_bez', 'Bundesland', 'year', 'month', 'weekday_hours', 'saturday_hours', 'weekday_hours_extra', 'saturday_hours_extra'], dtype='object') 

2026-01-06 07:00:13,220 - conversion_functions.py - DEBUG - 168 - business hours file: (2664, 9)  Index(['fg_sg', 'fg_bez', 'Bundesland', 'year', 'month', 'weekday_hours', 'saturday_hours', 'weekday_hours_extra', 'saturday_hours_extra'], dtype='object') 

2026-01-06 07:00:13,497 - conversion_functions.py - DEBUG - 168 - business hours file: (3996, 9)  Index(['fg_sg', 'fg_bez', 'Bundesland', 'year', 'month', 'weekday_hours', 'saturday_hours', 'weekday_hours_extra', 'saturday_hours_extra'], dtype='object') 

2026-01-06 07:00:13,597 - conversion_functions.py - DEBUG - 168 - business hours file: (4662, 10)  Index(['fg_sg', 'fg_bez', 'Bundesland', 'year', 'month', 'weekday_hours', 'saturday_hours', 'weekday_hours_extra', 'saturday_hours_extra', 'season'], dtype='object')